Wednesday, July 10, 2013

Kernel function

Source from wiki: 

Kernel functions in common use[edit]

Several types of kernel functions are commonly used: uniform, triangle, Epanechnikov, quartic (biweight), tricube, triweight, Gaussian, and cosine.
In the table below, 1{…} is the indicator function.
Kernel Functions, K(u)\textstyle \int u^2K(u)du\textstyle \int K^2(u)du
UniformK(u) = \frac12 \,\mathbf{1}_{\{|u|\leq1\}}Kernel uniform.svg  \frac13  \frac12
TriangularK(u) = (1-|u|) \,\mathbf{1}_{\{|u|\leq1\}}Kernel triangle.svg  \frac{1}{6}  \frac{2}{3}
EpanechnikovK(u) = \frac{3}{4}(1-u^2) \,\mathbf{1}_{\{|u|\leq1\}}Kernel epanechnikov.svg  \frac{1}{5}  \frac{3}{5}
Quartic
(biweight)
K(u) = \frac{15}{16}(1-u^2)^2 \,\mathbf{1}_{\{|u|\leq1\}}Kernel quartic.svg  \frac{1}{7}  \frac{5}{7}
TriweightK(u) = \frac{35}{32}(1-u^2)^3 \,\mathbf{1}_{\{|u|\leq1\}}Kernel triweight.svg  \frac{1}{9}  \frac{350}{429}
TricubeK(u) = \frac{70}{81}(1- {\left| u \right|}^3)^3 \,\mathbf{1}_{\{|u|\leq1\}}Kernel tricube.svg  \frac{35}{243}  \frac{175}{247}
GaussianK(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^2}Kernel exponential.svg  1\,  \frac{1}{2\sqrt\pi}
CosineK(u) = \frac{\pi}{4}\cos\left(\frac{\pi}{2}u\right) \mathbf{1}_{\{|u|\leq1\}}Kernel cosine.svg  1-\frac{8}{\pi^2}  \frac{\pi^2}{16}

All of the above Kernels in a Common Coordinate System[edit]

All of the above kernels in a common coordinate system

No comments:

Post a Comment